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Summary 
During the last decades there has been a dramatic increase in obesity world-wide. There are several 
reasons for such an increase, including diet and lifestyle. Recently toxicological and epidemiological 
evidence pointed to a likely contribution of environmental pollutants which has led to the obesogen 
concept. Perinatal exposure to several endocrine disruptors leads to increased body weight later in life as 
well as to several metabolic disorders, which may partially contribute to the obesity epidemics and 
interact with other risk factors. Additionally, there is evidence that pollutants such as persistent organic 
pollutants (POPs) trigger an inflammatory phenotype in the adipose tissue (AT) thereby enhancing the 
pathological consequences of obesity. The AT also plays a role in the toxicokinetics of POPs since it can 
store these chemicals for a long time and, in that sense, may be protective during acute exposure. 
However growing evidence suggests that these chemicals can be released from the AT at a low level. 
Thus, this tissue constitutes an endogenous source of chronic exposure to POPs. 
 

Introduction 

Non-communicable diseases have considerably increased worldwide during the last decades (1). The 
increase in obesity prevalence is particularly relevant since it is a commonly known risk factor for 
disorders such as impaired glucose tolerance, metabolic syndrome, diabetes mellitus, liver and 
cardiovascular diseases (CVD), as well as some cancers (2). The adipose tissue (AT) of obese individuals 
is quantitatively much larger and includes more pathological features, than that of lean individuals. Much 
of our understanding of the interaction between obesity and environmental pollutants is largely focused 
on the AT. Historically, the AT was considered as a simple storage tissue. However, its physiological 
functions have been considerably reassessed over the last decade (3). Evidence for metabolic, endocrine 
and immune functions of the AT including stroma has accumulated. Greater attention is now given to the 
pathological contribution of the AT to obesity and metabolic disorders such as type 2 diabetes. Lately, 
various interactions between the AT and certain pollutants such as the persistent organic pollutants 
(POPs) have been established suggesting that this tissue plays a significant role in the kinetics and the 
toxicity of POPs. 

This review will summarize recent observations on the interaction of POPs with AT and obesity (for more 
details, refer to 4, 5). POPs cannot be metabolized by the xenobiotic metabolizing system and therefore 
tend to accumulate in ecosystems and in living organisms. The best studied are those which were listed in 
the Stockholm convention to limit their production and dissemination because of their possible long term 
toxicity (5, 6). POPs include certain organochlorine pesticides, dioxins, furans, polychlorobiphenyls and 
polybrominated flame retardants. They do not readily undergo degradation by xenobiotic metabolizing 
enzymes (XMEs), because of their bulk and halogenation. However, they do activate certain xenobiotic 
receptors, and some bind to certain XMEs such as CYP1A2 without undergoing catalytic transformation. 
Because of their hydrophobicity, POPs tend to distribute into lipid rich tissues such as the AT and milk. 

We can now consider that, in addition to its other metabolic and endocrine functions, the AT has an 
identified and diverse toxicological function. First, the AT is a target of several chemicals which alters its 
functions, increase inflammation, and/or modulate the differentiation of precursor cells. For instance, 
obesogens are exogenous chemicals (food contaminants, pharmaceuticals, personal care products, or 
environmental toxicants) that directly or indirectly increase obesity through disruption of metabolic, 
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hormonal, or developmental processes (7,8). Second, the AT can store a variety of hydrophobic 
xenobiotic chemicals, in particular POPs. Third, AT also constitutes a low-grade internal source of stored 
POPs leading to continuous exposure of other tissues. In this review, we discuss the interaction between 
pollutants and obesity with a focus on the complex, previously unsuspected, role of AT in toxicology. 

 

The Obesogen Concept 
Exposure to certain pollutants during particular windows of vulnerability has been shown to increase AT 
mass and contribute to obesity later in life. Development, e.g. prenatal, postnatal, and pubertal, is likely a 
critical window of susceptibility to obesogen effects of toxic exposures (9) (figure 1). Programming 
mechanisms are still unclear (see below), but are believed to involve epigenetic regulation of critical 
genes that lead to adiposity later in life (10, 11). Evidence suggests that developmental exposures to 
chemicals that increase risk of obesity sometimes operate in a non-monotonic dose-response manner; 
cachexia may occur at high doses whereas body and/or adipose mass gain occurs at low doses of the same 
chemical. Further, there may be gender specific effects of developmental toxic exposures that increase the 
risk of obesity (12). Developmental exposures to these same POPs are positively associated with obesity 
in humans (4, 5). 

 

 
 

Figure 1: Model representing the effect of pollutants on AT. Exposure to several chemicals called 
obesogens during the perinatal period leads to the development of obesity later in life. The mechanisms of 
this programing effect have not been delineated, however, it is believed that epigenetic regulations are 
involved. Pollutants, particularly POPs, can also interfere with AT biology either by increasing 
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inflammation or through metabolic disruption and thereby contribute to the appearance of pathological 
side effects of obesity. Such mechanisms may also take place at the adult stage and are therefore distinct 
from the obesogen effects. 
 
Obesogens are frequently endocrine disruptors and belong to several chemical families. Several studies 
have been carried on POPs which are either dioxin-like (DL), ie they mimick the effect of dioxin on the 
dioxin receptor, AhR, or non DL. Rodent models indicate that DL chemicals may be obesogens. Exposure 
to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), 100 µg /kg b.w. once every 2 weeks for 8 weeks, 
increased body weights of adult mice over 40% higher than control-treated C3H/HeN mice (13). This 
body weight change was only seen when mice were fed a high fat diet. In a one-month study, chronic 
developmental exposure to the PCB mixture Aroclor 1254 was associated with increased body weights of 
mouse pups on postnatal days (PND) 16-20 (14). Further, exposure of adult mice PCB-77 led to an AhR 
dependent increase in body mass (15). This PCB-77 exposure also increased fatty liver in CVD model 
mice (16). Fatty liver, attributed to increased hepatic triglycerides and cholesterol, was also caused by 50 
mg of PCB-169/kg body weight (17). 
 
There	  is	  limited	  evidence	  of	  increased	  adiposity	  in	  animal	  studies	  of	  POPs	  that	  are	  not	  DL,	  however	  
body	   fat	   is	   seldom	  assessed	   in	   studies	   reporting	  no	   increased	  body	  mass	  after	  POP	  exposure	   (9).	  
Prenatal	   exposure	   to	   a	   major	   polybrominated-‐	   diphenyl	   ether	   (PBDE-‐99,	   2,2’,4,4’,5-‐penta-‐BDE)	  
increased	  mouse	  birth	  weight	  (18),	  and	  pre-‐	  and	  postnatal	  exposure	  to	  BDE-‐47	  (2,2’,4,4’-‐tetra-‐BDE)	  
increased	  rat	  body	  weights	  from	  birth	  to	  puberty	  (when	  the	  study	  ended)	  (19).	  In	  the	  longest	  study	  
of	  developmental	  PBDE	  exposure	  to	  examine	  body	  weights,	  male	  mice	  exposed	  to	  BDE47	  10	  days	  
after	  birth	  had	  increased	  body	  weights	  from	  PND	  47	  until	  the	  end	  of	  the	  study,	  at	  4	  months	  of	  age	  
(20).	   These	   studies	   indicate	   significant	   body	   composition	   effects	   of	   perinatal	   exposure	   to	   PBDEs,	  
however	   the	   mechanisms	   remain	   unclear	   and	   the	   data	   should	   be	   interpreted	   with	   caution	   as	  
certain	  preparations	  of	  BDEs	   could	  be	   contaminated	  with	  DL	   chemicals.	   In	  perinatal	   exposure	   to	  
perfluorooctanoic	  acid	  (PFOA)	  which	  is	  not	  a	  traditional	  POP,	  obesogenic	  effects	  do	  not	  appear	  until	  
later	  in	  life.	  Mice	  exposed	  to	  low	  levels	  of	  PFOA	  in	  utero	  had	  increased	  body	  mass	  once	  mature,	  with	  
an	  inverted	  U	  shape	  dose	  response	  curve	  (21).	  By	  18	  months	  of	  age,	  there	  was	  no	  longer	  an	  effect	  
on	  mouse	  weight,	  however,	  there	  was	  a	  positive	  dose	  response	  relationship	  between	  in	  utero	  PFOA	  
exposure	   levels	  and	  abdominal	  brown	  AT	  mass	   in	  the	  aged	  mice,	  whereas	  a	  negative	  relationship	  
was	  found	  with	  white	  AT	  mass.	  Consistent	  with	  experimental	  findings,	  a	  recent	  prospective	  human	  
study	  demonstrated	   that	  maternal	  PFOA	   levels	  during	  pregnancy	  were	  associated	  with	  obesity	   in	  
the	   daughters	   20	   years	   later	   (22).	   Organochlorine	   pesticides	   may	   also	   increase	   adiposity.	   For	  
instance,	   oral	  DDT	  exposure	   increased	   the	  body	  weights	   and/or	  adiposity	  of	  both	  mouse	  and	   rat	  
offspring	  in	  several	  multi-‐generational	  studies	  (11,	  23,	  24). 
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Several studies assessing obesogenic effects were devoted to other pollutants which are not persistent, 
particularly endocrine disruptors. Much effort was devoted to Bisphenol A (BPA), and, in many cases, 
perinatal exposure to BPA was shown to lead to increased body weight later in life (reviewed in 25 and 
26). Non monotonic curves were sometimes observed. However, the effect of BPA was not always 
consistent, suggesting that specific experimental conditions were required to unravel the obesogenic 
effects of BPA. This could be interpreted as suggesting that the interaction of this chemical with other 
environmental factors such as diet is critical for the obesogenic effect to be observed. Human studies 
recently demonstrated that fetal exposure to BPA was associated with increased BMI in 4 years old 
children (27). Another well studied obesogen is tributyltin (TBT). Perinatal exposure to TBT leads to 
increased adipose mass transgenerationally (28, 29). These effects have been related to the activation by 
TBT of the PPARg/RXRa heterodimer and with a possible involvement of epigenetic effects. The effects 
of more complex exposures such as maternal smoking and air pollution, which also correlate with 
offspring obesity, will not be discussed here. 
  

Are metabolic consequences of obesity induced by pollutants? 
Obesity causes predisposition for other metabolic diseases such as type 2 diabetes and and metabolic risk 
features such as moderate elevation of glycemia, hypertriglyceridemia or low HDL. Several 
epidemiological studies carried following industrial exposure of workers or accidental contamination by 
POPs indicated a relationship between serum concentration of certain POPs and markers of diabetes or of 
a prediabetic state. This is the case of the Seveso cohort in which increased metabolic syndrome (but not 
obesity) was observed in women exposed to dioxin before the age of 12 (30). Such a correlation was also 
found in a large study carried in the general population (31). Prospective studies in the elderly have also 
indicated a possible role of certain POPs in the pathogenesis of type 2 diabetes (32). There are also some 
experimental studies clearly correlating POP mixtures with metabolic syndrome occurrence in the rat 
(33). A National Toxicology Program workshop concluded that POPs were associated with type 2 
diabetes but that no causal relationship could be established at this stage (34). A recent study indicated 
that metabolically healthy but obese individuals had lower plasma levels of several classes of POPs than 
obese individuals with metabolic abnormalities (35). Other pollutants were also associated with metabolic 
diseases but only POPs have been discussed here. 
 
The	   interactions	   between	   obesity,	   POPs	   and	   metabolic	   disruption	   were	   unraveled	   in	   several	  
mechanistic	  studies.	  Because	  of	  the	  implication	  of	  the	  AT	  in	  metabolic	  diseases,	  it	  was	  hypothesized	  
that	   this	   tissue	  could	  be	  a	   target	  of	  POPs	  and	   indeed,	   several	  effects	  were	   found.	   Its	  vulnerability	  
may	  be	  due	  to	  its	  ability	  to	  accumulate	  POPs	  as	  we	  will	  see	  later.	  Most	  of	  the	  studies	  were	  in	  vitro	  or	  
ex	  vivo,	  but	  recently	  the	  effect	  of	  POPs	  on	  the	  AT	  of	  rodents	  was	  also	  assessed.	  POPs	  were	  shown	  to	  
display	   anti-‐insulin	   effects	   in	   cellular	   models	   of	   adipocytes.	   For	   example,	   dioxin	   repressed	   the	  
glucose	   transporter	   Glut4	   expression	   and	   lipoprotein	   lipase	   in	   3T3-‐F442a	   cells	   (36).	   This	   anti-‐
insulin	   effect	   is	   not	   general	   and	   consistent	   for	   all	   genes.	   Indeed,	   whereas	   dioxin	   was	   found	   to	  
antagonize	  insulin	  action	  on	  certain	  genes	  such	  as	  the	  IGFBP1	  gene	  in	  hepatocytes	  (37),	  it	  displayed	  
a	   different	   effect	   on	   other	   genes	   such	   as	   the	   liver	   PEPCK	   gene,	   since	   it	   tended	   to	   inhibit	  
gluconeogenesis	  in	  this	  tissue,	  similarly	  to	  insulin	  (38). 
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Inflammation of the AT is one of the hallmarks of obesity and inflammatory phenotype is critical in 
metabolic diseases. POPs have been shown to induce proinflammatory genes in rodent adipose cells (36). 
We found similar effects in human adipocytes (39). Importantly, in mice treated with dioxin, not only the 
gene expression of proinflammatory genes was increased, but also invasion of this tissue by macrophages 
and lymphocytes was observed (39). Finally, dioxin was shown to inhibit the differentiation of adipocyte 
precursor cells in certain model systems and to antagonize the effects of PPARg. However the actual 
mechanisms remain elusive (40). In conclusion, preadipocytes and adipocytes are targeted by POPs which 
appear to disrupt certain signaling and differentiation pathways and to induce inflammation. 
 

Is there a protective role of AT and obesity? 
As mentioned earlier, the AT is a compartment which contains a high amount of POPs, particularly in 
organisms that are at the top of the food chain. Such a bioaccumulation leads to the age-dependent 
increase in POP content (41). POPs are taken up by adipocytes and localize within lipid droplets (42). 
However their precise location and their actual effects at the subcellular level are poorly understood. It is 
nevertheless believed that their accumulation within the AT decreases their availability for other cells and 
tissues thereby limiting their toxicity. Experimental evidence supports such a protective function for the 
AT. Indeed, studies carried in the 80s and the 90s showed that there was an inverse correlation between 
toxicity of POPs and fat mass of different animal species. Authors compared the 30-day toxicity of TCDD 
in approximately twenty terrestrial animal species and found a positive correlation between the BMI of 
these species and the LD50 (the dose that leads to 50% death in the animal population) of dioxin (43). 
They concluded that the species with the highest fat mass tended to display better resistance to dioxin in 
this particular acute exposure test. These conclusions were in line with studies showing that resistance of 
aquatic species to dioxin was also related to their fat mass leading to the paradoxical notion of “survival 
of the fattest” (44). However, these observations should not be taken as evidence suggesting that the BMI 
is the only factor discriminating sensitive and resistant species. There is indeed strong evidence for a 
major contribution of the genetically determined arylhydrocarbon receptor affinity for dioxin. 
 
It	   should	   be	   stressed	   that	   this	   protective	   function	   of	   the	   AT	   was	   revealed	   in	   acute	   or	   subacute	  
exposure	   tests.	   These	   high	   dose	   treatments	   may	   allow	   the	   distribution	   of	   the	   pollutants	   to	   all	  
tissues	  unless	  an	  efficient	  “filter”	  or	  a	  buffer	  system	  can	  capture	  them,	  thereby	  decreasing	  exposure	  
of	  the	  most	  sensitive	  tissues.	  This	  role	  is	  played	  by	  the	  partitioning	  of	  POPs	  into	  lipid-‐rich	  tissues.	  
This	   kinetic	   protective	   system	  does	   not	   only	   include	   the	  AT.	   Indeed,	   it	   has	   been	   established	   that	  
proteins	  such	  as	  the	  dioxin-‐inducible	  liver	  CYP1A2	  can	  bind	  this	  pollutant	  particularly	  during	  acute	  
or	  subacute	  exposures	  and	  play	  an	  important	  role	  in	  its	  toxicokinetics	  (45).	  It	  is	  now	  believed	  that	  
POPs	   are	   first	   distributed	   throughout	   the	   body	   and	   then	   captured	   by	   the	   liver	   inducible	   protein	  
compartment,	   with	   excess	   then	   redistributed	   to	   the	   AT.	   Obviously,	   these	   kinetic	   distribution	  
mechanisms	   depend	   heavily	   on	   the	   treatment	   dose	   and	   the	   body	   burden	   (46).	   Furthermore,	   in	  
several	  metabolic	  disorders,	   lipid	  droplets	   are	   found	   in	  other	   tissues	   such	  as	   liver,	  muscle,	  heart,	  
etc.	  with	  possible	  consequences	  related	  to	  POP	  storage. 
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AT could also be involved in the higher blood half-life of POPs in children. Indeed, newborns have a high 
body burden due to placental transfer during pregnancy and to breast-feeding. A higher blood elimination 
rate observed for the children compared to the adults might be explained by the dilution of the POPs 
across tissues like the AT rather than a higher metabolic rate. 

There is some indirect evidence for a protective role of AT from human studies. The association between 
fat mass and mortality depends on the serum concentration of POPs. Indeed, in those individuals with low 
POP concentration, mortality increased with fat mass, whereas in those with high POP concentrations, 
mortality tended to paradoxically decrease with fat mass (47). These observations can be accounted for by 
a protective function of the AT which becomes significant at high levels of POP contamination. 
 

Is the AT a source of endogenous exposure? 
As mentioned earlier, POPs and other lipophilic contaminants distribute according to their affinity for 
proteins and lipids and are stored primarily in the liver and the AT. They are also found in blood from 
which they can contaminate other tissues. Blood POP content can be either related to their release from 
storage tissues or to recently absorbed pollutants. Several observations in both human and animals 
suggest that the release of pollutants from the AT is an important source of blood POPs. 
 
In humans, most of the evidence has been gathered from studies on drastic weight loss in obese 
individuals. Such a weight loss can be achieved voluntarily through diet and bariatric surgery and could 
lead to a decrease of up to 30 kg of fat mass or even more in some cases. Several independent studies 
have shown that there was an increase in blood POPs following fat mass loss elicited by either diet alone 
or diet coupled with bariatric surgery (48, 49). If increased blood POP levels during weight loss is related 
to their release from AT, one would expect changes in POP content of this tissue. This has been addressed 
by Kim et al (49) who determined POP concentrations in both blood and AT and who also assessed the 
total amount of fat in the studied individuals. The data indicate that POP concentration in AT (expressed 
per gram lipid) increases with weight loss. While this may seem paradoxical, it is not particularly 
surprising since the total amount of fat mass decreases considerably thereby leading to an increased 
concentration of pollutants, e.g. released POPs can be taken up readily by the remaining fat. In line with 
these suggestions, we observed that POP concentrations in the AT of obese individuals is lower that that 
of lean individuals. However, the total amount of fat-stored POPs is 2- to 3-fold higher in obese 
individuals as compared to lean controls. Furthermore, this total amount tends to decrease by 15% 
following weight loss at least for certain POPs. This observation suggests that there is indeed some degree 
of POP release from AT during weight loss and that this release leads to a moderate decrease in total POP 
content. 
 
Experimental evidence also suggests redistribution of POPs from their storage sites in the AT. Indeed, a 
study shows that in rodents pretreated with radiolabeled hexachlorobenzene, weight loss leads to a time-
dependent increase in the brain content of this compound (50). The study shows that weight loss alters the 
distribution of lipophilic pollutants, thus leading to enhanced localization in the brain and other sensitive 
tissues with possible toxic outcome. 
 
Observational studies were also carried in northern elephant seals. These animals accumulate a large 
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amount of fat in order to cope with extended fasting. Their fat is contaminated with PCBs. During the 
fasting period which could last several weeks, they lose a large amount of fat. Debier et al (51) have 
shown that an increase in serum concentration of PCB during fasting which is likely due to their release 
from fat depots. Interestingly, the concentration of PCBs also increased in some of these depots 
(blubbers) because of the decreased fat content. However, different fat depots did not undergo similar 
changes, suggesting differences in the kinetics of POP exchange and release. It is suggested that the 
release of POPs during fasting may lead to toxic effects. 
 
A critical issue is whether the release of POPs from AT observed during weight loss could lead to toxic 
outcomes in other organs and tissues. Indirect evidence was obtained in humans from several studies of 
weight loss triggered by either diet or diet associated with bariatric surgery. We have shown that the 
dynamic increase in serum POPs following drastic weight loss correlated with a delayed and reduced 
improvement of blood lipid parameters and liver toxicity biomarkers (49). Correlations between blood 
POP concentrations and other clinical parameters such as metabolic and muscle parameters, were also 
observed in humans by the group of Tremblay who conducted seminal studies in this field (52). 
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Conclusion and Hypothesis 

 
 
Figure 2: Fate of a persistent organic pollutant (POP). Most xenobiotics are metabolized primarily by 
the liver and are thus detoxified. The detoxification system tends to render hydrophobic xenobiotics more 
hydrophilic which leads to their elimination in urine. Several halogenated xenobiotics are not 
metabolized and therefore tend to bind to liver proteins and to adipose mass. They can thus persist for 
years in the body and constitute a putative long term threat since they can be released from these 
compartment at low levels. 

The AT appears to play critical roles in the kinetics of POPs and in their pathogenic effects. It has a major 
role, together with the liver protein compartment in storing POPs and in preventing their distribution into 
more sensitive tissues. However, the AT storing capacity is constitutive and not inducible. This kinetic 
system acts as a buffer during acute or subacute exposure conditions. However, it translates an acute 
exposure into a long term, low-grade internal exposure (see figure 2). It thus transforms an immediate 
threat into a latent chronic threat. This buffer system perfectly illustrates a previously developed 
hypothesis (53) which proposes that systems that protect from acute exposure to xenobiotics contribute to 
their chronic toxicity. In addition to these functions, the AT constitutes a target of POP toxicity. Indeed, 
the main toxic effect triggered by these compounds is inflammation which is a well known risk factor for 
metabolic diseases. These observations support the contribution of POPs to metabolic diseases and 
suggest that AT alteration could at least partially mediate these effects. 
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~ Final Word ~ 
 
 
Thank you for reading this article.  
 
 
If you have found this article valuable, please share it with someone that will be interested in. 
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articles. 
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