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Introduction 
 
Neuroregulation of weight control and pubertal initiation are interrelated. We will examine the factors 
that regulate appetite and satiety, as well as energy homeostasis and we will elaborate on the influence 
that these factors exert on the hypothalamo-pituitary-gonadal (HPG) axis system. Leptin plays a key role 
in this regulation. A minimal amount of body fat is required in order for the pubertal changes to occur and 
more importantly, a minimal percentage of body fat is a prerequisite for menarche (1,2,3,4). On the other 
hand, several papers have documented that overweight and obese girls experience menarche at an earlier 
age as compared to normal weight counterparts. A secular trend towards an earlier age of menarche 
associated with the improvement of socioeconomic conditions and  parallel with the increase of the 
prevalence of overweight and obesity, has been documented (5,6). The prevalence of premature 
adrenarche is increasing and is higher among overweight and obese girls than among those with normal 
weight. A history of premature adrenarche increases the risk of developing polycystic ovary syndrome 
(PCOS) at a postmenarchal age. Obesity during the transition phase may promote the development of 
PCOS in adolescence The prevalence of PCOS is higher among overweight/obese girls than among those 
with normal Body Mass Index (BMI)(7). PCOS is related to reduced fertility. The use of contraception by 
obese adolescents girls is of special concern because of an increased risk of adverse events.  
 
Recent articles documented an association between an increased BMI, lower testosterone (T) 
concentrations and delayed puberty in adolescent boys (8). 
 
Pubertal development  
 
Puberty is the process by which the children develop secondary sexual characteristics and reproductive 
capacity. The timing and tempo of pubertal development is influenced by many genetic and 
environmental factors,. Nutrition plays a key role as evidenced by the delay of pubertal initiation and 
primary amenorrhea, as well as pubertal blockade and secondary amenorrhea associated with marked 
undernutrition. Although the permissive role of adequate nutrition for the activation of the gonadotropin 
releasing hormone (GnRH) is established, the exact role of overnutrition has not been fully elucidated (9). 
The initiation of the pubertal process appears to be controlled by the availability of energy, as means to 
prevent fertility during advert conditions (10). The connecting link between nutrition, adiposity and 
neurohormonal changes leading to pubertal development is leptin. Leptin, an adipocyte derived hormone, 
plays a very important role in this process. Leptin levels are very low in states of energy deficit, while 
they increase in states of energy excess and as body fat mass increases. Leptin is a key metabolic cue that 
signals energy sufficiency to control adequacy and timing of the reproductive function. In both sexes, 
leptin levels rise before puberty, followed by a rise of follicle stimulating hormone (FSH) and luteinizing 
hormone (LH) and subsequently of sex steroids (11,12). The subsequent response of leptin to the sex 
steroids is sexually dimorphic:  while leptin levels increase in response to estrogens, they decrease in 
response to testosterone (13). Leptin is required but not sufficient for normal sexual maturation as it has 
become evident from the studies of children with congenital hypoleptinemia in whom the administration 
of leptin did not trigger puberty (14). GnRH neurons lack leptin receptors and thus leptin itself cannot 
stimulate GnRH secretion (15). Leptin action is mediated through Kisspeptine secretion, as Kiss1 neurons 
located in the arcuate nucleus have leptin receptors (10). Besides leptin, neurokininin B, which is co-
expressed with Kisspeptine, acts in an autocrine/paracrine action and conveys metabolic information to 
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Kiss1 neurons thereby contributing to triggering the inititation of puberty (16, 17).  
 
Obesity is characterized by a state of hyperleptinemia secondary to the expansion of the adipocytes 
together with leptin resistance (18). Hyperleptinemia is associated with hyperinsulinemia, insulin 
resistance, increased levels of inflammatory markers, increased free fatty acids, decreased SHBG, 
hypogonadotrophic hypogonadism and subfertility. Mice overexpressing leptin demonstrate early vaginal 
opening followed by ovarian and uterine maturation, suggestive of accelerated maturation of the HPG 
axis (19). 
 
Recent studies suggest that early hyperleptinemia related to overnutrition and obesity may be associated 
with precocious pubertal development (20). 
 
Experiments in female Rhesus monkeys have shown that high calorie intakes results in accelerated body 
weight and height growth curves. In addition, elevated levels of insulin growth factor 1 (IGF-I) and leptin 
may signal specifically to GnRH neurons of the HPG axis, and trigger the onset of puberty (21).  
 

 
 
Figure 1. Leptin stimulates GnRH production through Kiss1 neurons, thus increasing gonadotrophins and 
sex hormones production. Estrogen promote leptin synthesis, whilst testosterone inhibits leptin 
production by the adipocytes. Ghrelin increases with energy deficit and inhibits GnRH secretion, thus 
decreasing gonadotophins secretion. Ghrelin inhibits testosterone synthesis by testis. 
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Besides leptin, ghrelin has emerged as an important peptide orexigenic signal promoting weight gain, 
which plays a major role in energy homeostasis and the control of body weight (22). Ghrelin levels 
correlate inversely with BMI. Ghrelin has been shown to have an inhibitory effect on LH secretion in 
animals and humans. This effect seems  to result from an inhibition at a hypothalamic level. Ghrelin 
effect on FSH secretion is either not well studied or undetectable. Persistently elevated levels of ghrelin as 
a signal for energy insufficiency, are not only able to inhibit LH secretion but also to impair the normal 
timing of puberty (22). (see figure 1) 
 
Girls with premature or early thelarche have higher BMI and percent fat than age-matched girls with no 
thelarche (6) while thelarche occurs earlier in overweight/obese girls. Girls with excessive BMI are more 
likely to have thelarche between the ages 8.0 and 9.6 years. Early thelarche in obese girls is not the result 
of GnRH activation, but is rather the isolated  consequence of an increased aromatase activity in the 
adipose tissue where androgens are converted to estrogens. Besides this, obesity is also associated with a 
decreased hepatic estrogens metabolism (23) and with decreased sex hormone binding globulin (SHBG) 
levels that increase free estrogen concentrations (24,25).  
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Figure 2: Increased adiposity, particularly increased visceral body fat, which can be the result of 
intrauterine growth retardation, promotes insulin resistance and through actions on the adrenal glands, 
liver, ovaries and adipose tissue increases sex hormones bioavailability. Increased circulating sex 
steroids can either have only local effects or also stimulate GnRH and lead to central precocious puberty 
(Adapted from Ahmed ML et al., Ref 24) 
 
Increased adiposity in early childhood can predict an earlier onset of puberty:  higher BMI z score in girls 
as young as 36 months of age and higher rate of change of BMI between 36 months old and grade1(i.e. 6 
years old kids) , a period well before the onset of puberty, are associated with earlier puberty (26). There 
is still a debate and ongoing research to elucidate the nature of the relationship between early rapid weight 
gain and early puberty. Obesity may trigger early puberty or a common genetic or environmental factor 
may underlie  both phenomena (23, 27). 
 
Pubertal overweight/obese girls have lower frequency and amplitude of LH pulses during sleep, while 
their responses to GnRH analog are similar  to those of  non overweight girls. Peak LH responses 
correlate with LH peak concentrations. In this study, all girls had  androgen and estrogen concentrations 
within normal limits for age (28). This blunted response is possibly related to the slower pubertal tempo 
reported by some investigators in obese girls. A negative correlation between body fat mass and tempo 
toward menarche was reported  (29). 
 
Age at menarche 
 
Menarche is a significant event for the adolescent and the reproductive life of the woman in general. 
Several factors influence the age at menarche which can be divided in two groups: genetic and non-
genetic. Genetic studies show that the heritability of the age at menarche ranges from 57 to 82 %  
(30,31,32,33). Early menarche is associated with health problems in adult life. Non-genetic factors are of 
significant interest, as they can be modified and thus influence the age of menarche. Age at menarche is 
negatively associated with BMI (34). 
 
Frich and Revell  first hypothesized  that a critical weight has to be reached for the initiation of menses 
and that body fat is positively correlated with menarche (1,2). As discussed earlier, the discovery of leptin 
provided the physiological explanation linking body fat and initiation of menses,since leptin stimulates 
the pulsatile release of GnRH (35). Kuplowitz et al reported that earlier age at menarche is associated 
with higher BMI, and that higher parental BMI is associated with earlier menarche (36). Two weight 
related factors are associated with age at menarche: weight per se and proportion of body fat. Several 
studies support the evidence that excess weight gain in infancy, childhood, pre puberty and puberty is 
associated with earlier age at menarche. Other conflicting studies suggest that the distribution of body fat 
may also have a significant effect on the age at menarche,. Guo and Ji report that higher waist 
circumferences are strong predictors of earlier menarche and are associated with long-term sequelae (37). 
Lassek and Gaulin suggest that gluteofemoral fat distribution has the greatest influence on menarche (38). 
Rapid postnatal weight gain has emerged as another important factor associated with earlier menarche. 
Earlier weight gain, particularly in small for gestational ages (SGA) babies, strongly predicts a younger 
age at menarche (39). A recent study in a population of Brazilian students attending private and public 



	  
7	  

	   	  

schools, report a higher percentage of overweight/obese girls attending private schools who have 
menarche at an age earlier than 11 years of age, but not in those attending public schools. In the group of 
students attending private schools mean age at menarche were 12.3 and 11.6 years respectively in normal 
weight/underweight and overweight/obese girls. The ages of menarche in the groups of public school 
students were 12.3 and 12.1 years respectively(40).  
 
Menarche at an early age seems to be directly associated with breast cancer risk and obesity during 
adulthood (41). A recent study (42) does not replicate previous findings associating early menarche with 
treatment failure of weight reduction: adolescents and late adolescents had a very high compliance and 
success rates in weight reduction (> 95%) (42).  Efforts towards lifestyle modification aiming at 
decreasing BMI clearly have to be intensified .  
 
Hyperandrogenemia  
 
Hyperandrogenemia (HA) is present in obese girls starting from prepubertal and early pubertal stages as 
demonstrated in the elegant work of McCourtney et al (25). Although mechanisms underlying the 
relationship between peripubertal obesity and HA remain uncertain, these data suggest that differences in 
insulin and LH contribute to free testosterone (fT) differences between obese and non obese girls (25). 
Mean total T was respectively 4.5-fold higher in obese Tanner 1 (prepubertal) girls and 1.6- and 3.3-fold 
higher in obese Tanner stage 2 and 3 girls than in normal-weight girls. Additionally, mean SHBG  was 
59–69% lower in the obese Tanner 1, 2, and 3 girls. The combination of high T and low HCG accounts 
for the estimated 8.8-, 2.2- and 5.8-fold higher mean fT in obese Tanner stages 1, 2, and 3 girls, 
respectively. All differences reported were statistically significant. Obese girls of all Tanner stages had 
statistically significant higher concentrations of fasting insulin and  insulin sensitivity HOMA index, as 
compared to normal weight girls. Mean dehydroepiandrosterone sulfate (DHEAS) was higher in obese 
girls. The  difference  reached significance in Tanner stage 1 girls only (25). 
 
In prepubertal boys and girls, adrenal androgens increase with adiposity expressed  in BMI SDS. In 
prepubertal children with obesity, DHEAS and androstenedione are increased, as well as free leptin and 
IGF-I. Children with premature adrenarche have increased BMI. Before the pubertal increase of gonadal 
steroids, DHEAS concentrations correlate with leptin and BMI, whereas androstendione concentrations 
correlate with IGF-I and BMI. Among children with premature adrenarche, neither BMI alone or leptin 
alone, can explain the precocious adrenal activity (43). 
 
Furthermore some data support the fact that weight loss leads to a decrease of testosterone and DHEAS 
production in prepubertal girls:  testosterone concentrations decreased significantly in obese prepubertal 
girls losing weight while it did not in those with stable weight.   DHEAS concentrations did not change in 
obese prepubertal girls with substantial and minimal weight loss, whereas   it increased in obese 
prepubertal girls who did not succeed in losing weight  (44).  
 
Reinehr et al showed that androgen concentrations correlate with BMI in prepubertal boys: obese boys 
had increased androgen concentrations as compared to normal weight boys. This difference was not 
evidenced  in pubertal boys (44). 
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Other studies show that  fT concentrations are highly variable among obese prepubertal girls. In a large 
cohort of peripubertal obese girls morning LH had the greatest ability to predict fT concentrations (45). 
Similar findings in adolescent with PCOS and hyperandrogenemia leaves us with two possible 
explanations:  LH stimulates androgen production by ovarian theca cells or androgens decrease the 
gonadostat sensitivity to sex steroid negative feedback, thereby leading to persistently rapid GnRH pulse 
frequency and increased LH secretion (45, 46). In the same study, insulin concentrations were the second 
best predictor of fT concentrations. Insulin can intensify LH action at the ovary level and thus stimulate 
hyperandrogenemia and, through SHBG decrease, increase fT concentrations.(47).  
 
Polycystic ovary syndrome 
 
Polycystic ovary syndrome (PCOS) is a common disorder affecting 6-8% of women and characterized by 
hyperandrogenemia , oligo-anovulatory cycles and polycystic appearance of the ovaries (48,49).  PCOS 
features appear during adolescence or soon after adolescence. The criteria for diagnosis of the syndrome 
in adolescence are the same as in adults. However  physiological  variances into puberty during 
adolescence make it sometimes uneasy to establish. A percentage of normal adolescent girls have 
anovulation and the ovaries may have polycystic appearance in 50% of normal girls. The HA is of key 
importance (50). A large percentage of PCOS adolescents and women also present with obesity 
associated with the stigma of insulin resistance and hyperinsulinemia. (51). The contribution of obesity in 
the development of PCOS is supported by the relatively frequent development of the syndrome after a 
significant weight gain (52) and the resolution of the syndrome while maintaining normal weight (53). 
The neuroregulatory dysfunction underlying PCOS is an increased GnRH pulses frequency leading to an  
increased LH pulsatility and a relative FSH deficiency. Persistent rapid GnRH secretions appear to evolve 
during puberty. Obesity seems to play a significant role in the development of the PCOS which is 
characrerized by endocrine, metabolic and reproductive disorders. Therefore, leptin was hypothesized to 
be the link between obesity and the development of PCOS. Several studies have tried to clarify the role of 
leptin but the results are mixed. The inconsistency of the findings may well result from the diversity of 
the populations studied. Furthermore, in the subset of obese adolescents girls among which 50 % suffer 
PCOS, hyperleptinemia may play a role (54). 
 
Knusden et al (45) on the basis of the above mentioned data, proposed the following working hypothesis 
on the obesity-related HA and its potential relationship to the development of PCOS: peripubertal obesity 
is associated with variable degrees of insulin resistance. Compensatory hyperinsulinemia can then 
increase ovarian and/or adrenal androgen production and lower SHBG, both of which increase fT 
concentrations. In susceptible girls, HA lowers  the sensitivity of the GnRH pulse generator to negative 
feedback, leading to persistently rapid GnRH pulses, elevated LH and impaired FSH secretion. These 
neuroendocrine abnormalities maintain or worsen HA, leading to a vicious cycle underlying the evolution 
toward the PCOS phenotype (45, 55). 
 
Recent evidence also suggests the existence of an additional vicious circle between abdominal fat 
deposition and androgen excess  leading to PCOS: androgen excess favors the abdominal deposition of fat 
which in turn promotes androgen secretion by the ovaries and adrenal gland (49). Identifying the primary 
cause is challenging . The adipose tissue has been proven to be a metabolically active organ which 
secretes a number of cytokines and adipokines. Adipokines such as leptin and cytokines such as TNFα 
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and IL-6 are involved in the pathogenesis of obesity-related insulin resistance and have a direct influence 
ovarian and adrenal functions. (49). In animal models  TNFα induces PCOS features, stimulating rat theca 
cells proliferation. In vitro studies show that IL-6 induces proliferation of human adrenal cells. 
Furthermore, visceral adipose tissue expresses enzymes of the adrenal steroidogenesis cascade, such as 3β 
hydroxysteroid dehydrogenase, 17β hydroxysteroid dehydrogenase, aromatase and type 11-1β 
hydroxysteroid dehydrogenase and might in this way contribute to or modulate HA in PCOS. While HA 
is usually the result of obesity and insulin resistance, it has been shown that long term testosterone 
administration is associated with increased visceral fat.  Prenatal exposure to increased androgen 
concentrations leads to phenotypic characteristics of PCOS in non-human primate, ovine and rodent 
animal models.  As a consequence, prenatal exposure of human female embryos to increased androgen 
concentrations may correlate with increased visceral adiposity and insulin resistance in late adolescence 
and adulthood (54,56). 
 
Ovarian theca cells from PCOS patients appear to have the intrinsic property of synthesizing excessive 
amounts of androgens when exposed to appropriate stimuli (57) which could partly be of genetic origin 
(58). Leptin does not appear to play a central role in HPG dysfunction and hyperandrogenemia. Previous 
studies have shown the lack of correlation between leptin  and LH, T, DHEAS and estradiol 
concentrations (59, 60). However, some other data support a positive correlation between leptin and LH 
concentrations in PCOS subjects and controls (61). Notably, there is evidence that the effect of leptin in 
the kiss1 neurons depends on the duration of hyperleptinemia. Thus, very early hyperleptinemia 
stimulates kiss1 neurons while prolonged hyperleptinemia suppresses kiss1 neurons and this can be 
related to anovulation as part of the PCOS (56). These findings illustrate that the effects of increased 
leptin concentrations on the HPG axis and more specifically on the Kiss 1 system might depend on the 
timing, the duration and the degree of this elevation (51). 
 
Leptin concentrations correlate negatively with concentrations of SHBG and free sex steroids (62, 63) but 
this correlation may be mediated by insulin resistance. Hyperleptinemia may play a role in the 
development of PCO syndrome at the level of the ovaries. Leptin receptors are present in the granulosa 
and theca cells of human ovarian follicles. Low leptin concentrations stimulate estrogen and progesterone 
production by the theca cells, whilst high concentrations inhibit their production, as shown by in vitro 
studies (64). However, in women with PCOS, no differences were detected in leptin concentrations, 
among the subjects with or without anovulatory cycles, implying that the role of leptin in follicular 
maturation is mediated through a difference in sensitivity (65). 
 
Obesity and insulin resistance may not be the cause of PCOS as lean adolescents and women may suffer 
PCOS. Obesity and insulin resistance are more likely to amplify rather than cause the reproductive 
features of PCOS (66). Insulin sensitizers, like metformin used in the treatment of PCOS, decrease insulin 
but not leptin concentrations, underlining the complex  pathophysiology of this syndrome (67). 
 
Reproduction 
 
The complex metabolic regulation of reproduction centers on the KISS1 neurons. They receive messages 
from leptin, ghrelin, neuropeptide Y (NPY), melanocortin, insulin and insulin like growth factor (17). 
Women who are obese are more likely to have fertility problems (68). Thus, many fertilization programs 
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exclude severely obese women, as they have lower success rate and increased complication risk level 
(69).  
 
Obesity in late adolescence and early adulthood predicts lower fertility rates, as women who are obese at 
17-24 years of age are less likely to be mothering 1-2 children at 45 years of age (69). Obese women have 
lower fertility rates. Even in the absence of PCOS, women with BMI higher than 25 kg/m2 have longer 
follicular phases, shorter luteal phases, lower FSH, LH, and progesterone levels (70). Impaired oocyte 
function and diminished endometrial receptivity aggravate the subfertility issue (70). 
 
Boys  
 
Most of the evidence presented above applies to obese girls. A recent longitudinal population based study 
reported that a higher BMI during childhood increases the possibility for delayed puberty among boys. 
Boys with increased fat mass do not have earlier puberty in contrast to what happens in girls (8). The 
pathophysiological mechanism has not been completely elucidated. Data concerning sex hormone levels 
and pubertal transition for boys are scarce. Prepubertal and pubertal obese boys have lower SHBG than 
normal weight boys, but testosterone levels do not differ. Pubertal obese boys have a higher 
estrogen/testosterone ratio than normal weight boys. In the prepubertal boys, SHBG concentrations are 
negatively correlated with testosterone concentrations and positively with the estradiol/testosterone ratio. 
Increased estrogen concentrations inhibit GnRH secretion while leptin resistance may contribute to lower 
gonadotropin concentrations.  
 
Obese men have decreased testosterone and gonadotropin levels and increased estrogen levels (71). As a 
result of increased peripheral conversion they have increased estrogen concentrations which are related to 
erectile dysfunction through an increased negative feedback from the estrogen and a subsequent 
hypogonadotrophic state (70). Additionally, impaired spermatogenesis and poor quality and sperm 
motility have been reported in obese men (70). Inhibin-B concentrations have been found to be lower in 
obese young adult men compared with normal-weight men but not in prepubertal boys. A current 
hypothesis is that the negative impact of obesity on Sertoli cells proliferation during (peri)puberty may 
contribute to male reproductive dysfunction in adulthood (72). Several studies clearly show that obese 
men have an increased risk of subfertility and subfecundity, mainly due to the abnormal regulation of the 
HPG axis. The connecting link is again leptin: reduced leptin signaling leads to reduced GnRH neuronal 
activity. Increased leptin resistance associated with obesity also  results in altered concentrations of 
reproductive hormones and may explain the association between BMI, altered semen parameters and 
infertility (73) (Fig 3.). Whether the mechanisms identified in adult men are applicable to prepubertal and 
peripubertal boys needs further clarification.  
 
Conclusions  
 
Obesity and increased adiposity, particularly central adiposity, mediates alterations in leptin and insulin 
secretion and sensitivity, thus interfering at different levels in the process of pubertal development and 
reproductive function. The main outcomes are prepubertal HA in girls and boys, a trend towards an earlier 
thelarche, puberty and menarche in girls but a slower pubertal progression in boys. Obesity increases the 
risk of PCOS development among adolescent girls. Finally, obesity has an impact in a number of 
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reproductive targets, including the HPO axis, oocyte quality, endometrial receptivity in women and  
spermatogenesis in men.  
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